Quiz 3 Chemical Engineering Thermodynamics February 4, 2016

3.7. Benzene and benzyl chloride produced from the reaction described in <u>problem 3.6</u> are separated by distillation at 1 bar. The chlorine and HCl are removed easily and this problem concerns only a binary mixture. Suppose the liquid flow to the reboiler is 90 mol% chlorobenzene and 10 mol% benzene at 121.9°C. The boilup ratio is 0.7 at 127.8°C, and the vapor leaving the reboiler is 12.7 mol% benzene. The heat of vaporization of chlorobenzene is 41 kJ/mol. Heat capacities for liquids are in <u>problem 3.6</u>(a). Determine the heat duty for the reboiler.

In answering this, sketch the process, do a mass balance, and an energy balance.

(see problem 3.6 and tables below for parameters you need for the calculations)

3.6. Chlorobenzene_(l) is produced by reacting benzene_(l) initially at 30°C with $Cl_{2(g)}$ initially at 30°C in a batch reactor using $AlCl_3$ as a catalyst. $HCl_{(g)}$ is a by-product. During the course of the reaction, the temperature increases to 50°C. To avoid dichlorobenzenes, conversion of benzene is limited to 30%. The NIST

WebBook reports the heats of formation for liquid benzene and chlorobenzene at 25°C as 49 kJ/mol and 11.5 kJ/mol, respectively. The heat capacities of liquid benzene and chlorobenzene are 136 J/mol-K and 150 J/mol-K, respectively.

		$\Delta H_{f,298.15}$	$\Delta G_{f,298.15}$	Heat Capacity Constants			
		kJ/mol	kJ/mol	A	В	C	D
	gases: Standard State PRESSURE IN BAR				ERTIES		1
260	1-Decene	-124.69	119.83				
270	Cyclohexene	-4.6	106.859				
303	1,3-Butadiene	109.24	149.73	-1.687	0.3419	-2.340E-04	6.335E-08
309	2-Methyl-1,3- butadiene (Isoprene)			-3.412	0.4585	-3.337E-04	1.000E-07
401	Acetylene	226.731	209.2	26.82	0.07578	-5.007E-05	1.412E-08
	Styrene			-28.25	0.6159	-4.023E-4	9.935E-8
Aroi	matics						
501	Benzene	82.88	129.75	-33.92	0.4739	-3.017E-04	7.130E-08
502	Toluene	50.17	122.29	-24.35	0.5125	-2.765E-04	4.911E-08
504	Ethylbenzene	29.92	130.73	-43.1	0.7072	-4.811E-04	1.301E-07
505	1,2-Dimethyl benzene	19	122.22	-15.85	0.5962	-3.443E-04	7.528E-08
506	1,3-Dimethyl benzene	17.24	119	-29.17	0.6297	-3.747E-04	8.478E-08
507	1,4-Dimethyl benzene	17.95	121.26	-1.509	0.6042	-3.374E-04	6.820E-08
510	Isopropylbenzene (Cumene)	3.93	137.15	-33,936	0.7842	-5.087E-04	1.291E-07
558	Biphenyl	182.42	281.08	-97.07	1.106	-8.855E-04	2.790E-07
601	Phenylethene	147.36	213.802	77107	11130	0.0000	2
701	Naphthalene	150.959	223.593	-68.8	0.8499	-6.506E-04	1.981E-07
702	1-Methylnaphthalene	3.000		-64.82	0.9387	-6.942E-04	2.016E-07
706	1,2,3,4-Tetrahydro- naphthalene (Tetralin)	24.2	167.1				
803	Indene	163.28	233.97				_
805	Phenanthrene	206.9	308.1				
	genated Hydrocarbons	200,7	500.1				-
	Formaldehyde	-117.152	-112.968				_
	Acetaldehyde	-166.021	-133.302			_	_
	Acetone	-215.7	-151.2	6.301	0.2606	-1.253E-04	2.038E-08
	2-Butanone	-239	-151.9	10.94	0.3559	-1.900E-04	3.920E-08
	Methanol	-200.94	-162.24	21.15	0.07092	2.587E-05	-2.852E-08
	Ethanol	-234.95	-167.73	9.014	0.2141	-8.390E-05	1.373E-09
	Propanol	-255.2	-161.795	2.47	0.3325	-1.855E-04	4.296E-08
	2-Propanol	-272.295	-173.385	32.43	0.1885	6.406E-05	-9.261E-08
	Butanol	-274.6	-150.666	3.266	0.418	-2.242E-04	4.685E-08
	Isobutanol	274.0	120.000	-7.708	0.4689	-2.884E-04	7.231E-08
	I-Hexanol	-316.5	-135.562	7.700	0.7007	2100712-07	7120115-00

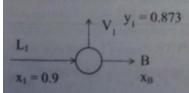
E.2. Latent Heats

	$T_m(^{\circ}\mathrm{C})$	ΔH^{fus} kJ/mol	T ^{sat} (°C) at 1.01325 bar	ΔH ^{vap} kJ/mol
Acetic acid	16.6	12.09	118.2	23.7
Acetone	-95.	5.69	56.	30.2
Anthracene	216.5	28.86		
Benzene	5.53	9.837	80.1	30.765
Biphenyl	69.2	18.58		
n-Butane	-138.3	4.661	-0.6	22.305
Cyclohexane	6.7	2.677		
Ethanol	-114.6	5.021	78.5	38.58
n-Hexane	-95.32	13.03	68.74	28.85
Naphthalene	80.2	18.80		
Phenanthrene	99.2	16.46		7
Phenol	40.9	11.43		
Water	0.00	6.0095	100.0	40.656

Properties of Selected Compounds

Heat capacities are values for **ideal gas at 298 K** and should be used for **order of magnitude calculations** only. See appendices for temperature-dependent formulas and constants.

ID	Compound	Т _с (К)	P _c (MPa)	ω	ρ g/cm³	MW	C_P^{ig}/R	$\delta \over (\mathrm{J/em^3})^{1\!\!/_{\!\!2}}$	α (J/cm ³) ^½	β (J/cm³) ^½
Olefi	ns and Acetylene									
201	ETHYLENE	282.4	5.032	0.085	0.43	28	5.26	13.5	0	0.40
202	PROPYLENE	364.8	4.613	0.142	0.61	42	7.69	13.2	0	0.40
207	1-BUTENE	419.6	4.020	0.187	0.63	56	10.31	13.7	0	0.40
204	ISOBUTENE	417.9	3.999	0.189	0.59	56	10.72	13.7	0	0.40
209	1-PENTENE	464.8	3.529	0.233	0.63	70	13.17	14.5	0	0.24
401	ACETYLENE	308.3	6.139	0.187	0.50	28	5.32	18.68	0.40	0.40
303	1,3-BUTADIENE	425.4	4.330	0.193	0.65	54	9.56	15.6	0	0.70
309	ISOPRENE	484	3.850	0.158	0.68	68	12.78	15.3	0	0.70
Aron	Aromatics									
501	BENZENE	562.2	4.898	0.211	0.87	78	9.82	18.7	0.63	2.24
502	TOLUENE	591.8	4.109	0.264	0.86	92	12.49	18.3	0.57	2.23
504	ETHYLBENZENE	617.2	3.609	0.304	0.86	106	15.44	18.0	0.23	1.83
505	o-XYLENE	630.4	3.734	0.313	0.88	106	16.03	18.4	0.10	1.80
506	m-XYLENE	617.1	3.541	0.326	0.86	106	15.35	18.1	0.19	1.84
507	p-XYLENE	616.3	3.511	0.326	0.86	106	15.26	17.9	0.27	1.87
510	CUMENE	631.2	3.209	0.338	0.86	121	18.25	17.4	0.20	2.57
558	BIPHENYL	789.3	3.847	0.366	0.99	154	19.52	19.3	0.50	4.00
563	DIPHENYLMETHANE	768	2.920	0.461	1.00	168	21.87	19.6	0.50	4.00
701	NAPHTHALENE	748.4	4.051	0.302	0.98	128	16.03	19.5	0.86	6.87
702	METHYLNAPHTHALENE	772	3.650	0.292	1.02	142	19.08	20.1	0.77	6.13
706	TETRALIN	720.2	3.300	0.286	0.97	132	18.63	19.3	0.60	4.82


Chloro Benzenchlorobenzene

Thermodynamic properties [edit]

Phase behavior						
Triple point	? K (? °C), ? Pa					
Critical point	633.4 K (360.25°C), 4.52 MPa					
Std enthalpy change of fusion, Δ _{fus} H ^θ	? kJ/mol					
Std entropy change of fusion, Δ _{fus} S ^Θ	9.6 J/(mol·K)					
Std enthalpy change of vaporization, Δ _{vap} H ^θ	40.97 kJ/mol					
Std entropy change of vaporization, $\Delta_{\text{Vap}}S^{\Theta}$? J/(mol·K)					
Solid prope	rties					
Std enthalpy change of formation, Δ _f H ^e _{Solid}	? kJ/mol					
Standard molar entropy, S ^e solid	? J/(mol K)					
Specific heat capacity, cp	? J/(mol K)					
Liquid prope	erties					
Std enthalpy change of formation, $\Delta_f H^\Theta$ liquid	11.1 kJ/mol					
Standard molar entropy, S ⁶ liquid	? J/(mol K)					
Specific heat capacity, cp	150.1 J/(mol K)					
Gas proper	ties					
Std enthalpy change of formation, Δ _f H ^e gas	52.0 kJ/mol					
Standard molar entropy, S^{Θ}_{gas}	? J/(mol K)					
Specific heat capacity, cp	? J/(mol K)					
Van der Waals' constants	a = 25.8 L ² bar/mol ² b = 0.1454 L/mol					
Other properties						
Std molar enthalpy of hydration of gas, $\Delta_{\text{hyd}} H^{\text{po}} = \Delta_{\text{SOI}} H^{\text{po}} \cdot \Delta_{\text{Vap}} H^{\text{p}}$	-30.6 kJ/mol @ 298.15K					

Answers Quiz 3 **Chemical Engineering Thermodynamics February 4, 2016**

(3.07) Benzene and benzyl chloride produced from ...

Material balance to find x_B . Material balance on Φ Cl using a basis $L_1 = 1$ mol/min. $L_1(0.9) - V_1(0.873) = B(x_{\Phi CI})_B$

 $[1(0.9) - 0.7(0.873)]/0.3 = (x_{\Phi Cl})_B = 0.963$

Energy Balance

 $0 = H_{11}L_1 - H_{V1}V_1 - H_0B + Q$

Solution for enthalpies will use method of Fig 2.6(a)

Reference State-Liquid at 121.9K

 $H_1 = Cp_1(T-T_R)$

 $H_V = Cp_L(T_B - T_B) + \Delta H^{cap} + Cp_V(T_{VT} - T_B)$

Note that T_R is above T_8 for between so the first term for Hv will be negative. Use ideal solution approximation, $Hv = y_1Hv_1 + y_2Hv_3$, etc. From the NIST webbook, T_B for chlorobenzene is 404.9K. Tabulating calculations for each stream in columns to the left, using the pure component properties tabulated in the right columns, the stream enthalpies are calculated below.

	Ll .	VI	- 65				
flow	1	0.	7	0.3			
T(K)	395.05	400.9	5	400.95			
х(Ф)	0.1	0.12	7	0.127			
х(ФСІ)	0.9	0.87	3	0.873			
HL							
(D)	0			802.4			
(PCI)	0			885			
HL(for V)()	/mol)				Benzene	Chl	orobenzene
(D)		-5684	8		CpL(J/mol	-K)	
(ФCI)		1477.	5		13	6	150
ΔHvap(k)/	mol)				ΔHvap(kJ/	mol)	
(D)		30.76	5		30.76		41
(ΦCI)		4	1		CpV(J/mo	I-K) c	onstants
HV(J/mol)					-33.9	2	-33.89
(Φ)		5040.27	7		0.473	9	0.5631
(PCI)		-509.19	8		-3.02E-0	4	-4.52E-04
Htotal(J/m	ol)				7.13E-0	8	1.43E-07
(Φ)		30120.48	3		Tb(K)		
(ΦCI)		41968.3	3		353.2	5	404.9
neart walnu	e into en	arov bal	ano	66			

Insert values into energy balance

 $O = H_{V1}V_1 + H_8B - H_{L1}L_1$

 $Q = \{0.873(41968.3) + 0.127(30120)\}(0.7) + \{0.963(885) + 0.037(802.4)\}(0.3) - \{0\}(1)$ = $40464 \text{ J/mol} * 0.7 \text{ mol/(mol L_1)} + 882 \text{ J/mol} * 0.3 \text{ mol/(mol L_1)} = 28590 \text{ J/(mol L_1)}$.

The heat requirement per mole of L₁ is 28590 J/(mol L₁)